Des scientifiques soutenus par l’UE nous montrent comment des matériaux intelligents appelés polymères magnéto-actifs (MAP pour «magnetoactive polymers») pourraient un jour être utilisés pour stimuler la cicatrisation des plaies épithéliales.
Les MAP modifient leurs propriétés mécaniques en fonction de leur environnement. Développement révolutionnaire dans les domaines de la mécanique des solides et de la science des matériaux, ces matériaux consistent en une matrice polymère (un élastomère) dotée de minuscules particules magnétiques qui changent de forme et de dimensions en fonction de leur état d’aimantation.

«L’idée est qu’un champ magnétique externe induit des forces internes dans ce matériau de telle sorte que les propriétés mécaniques, telles que la rigidité, sont modifiées, ou même que des changements de forme et de volume se produisent, interagissant ainsi avec certains systèmes cellulaires», explique le Dr Daniel Garcia‑Gonzalez, ingénieur à l’Université Carlos III de Madrid dans un article publié sur «Explica.co».

Daniel Garcia-Gonzalez est le premier auteur d’une étude décrivant un modèle utilisé pour fournir une orientation théorique pour les systèmes MAP susceptibles d’être appliqués pour stimuler la guérison des plaies épithéliales. Dans cette étude, les chercheurs ont analysé comment les propriétés d’une matrice élastomère et la fraction volumique des particules affectent la réponse mécanique des MAP. Soutenus par le projet 4D‑BIOMAP financé par l’UE, les résultats de cette recherche ont été publiés dans la revue «Composites Part B: Engineering».

Test de la réponse des polymères

L’équipe de recherche a effectué des essais de traction sur 16 configurations de fabrication différentes du matériau, en analysant diverses combinaisons de fractions volumiques de particules et de rapports de mélange d’agents de réticulation (molécules reliant les chaînes de polymères) pour voir comment ils réagissaient à la contrainte. Les résultats ont montré une relation directe entre la fraction volumique des particules et la rigidité des MAP. L’augmentation de la fraction volumique des particules a entraîné une augmentation de la rigidité globale pour tous les rapports de mélange testés. Le rapport de mélange semble également jouer un rôle clé dans la détermination de la réponse mécanique des MAP.

La suite sur Cordis